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Abstract— Efficient monitoring and quick feedback control are the main requirements of smart cities to guarantee the 

stability and safety of urban infrastructures. Real-time monitoring in order to detect anomalies leads to the intensive 

data processing and hence requires a new computing scheme to offer large-scale and low latency services. Fog 

architecture by extending computing to the edge of the network, provides the ability to accurate and fast detection of 

abnormal patterns. A hierarchical fog computing architecture and an efficient hyperellipsoidal clustering algorithm 

presented in previous studies have been applied to identify anomalous behaviors in water distribution grids. We created 

an urban water distribution grid dataset using Epanet2w simulator software by measuring grid features: pressure and 

head for several scenarios. We created 12 distinct events (unexpected behavior) with different scales during the 

simulation time. To evaluate the effectiveness of the hierarchical anomaly detection model in water distribution grids, 

the data and computing nodes at different layers were executed as docker containers.  The evaluation results proved the 

efficiency of the proposed hierarchical anomaly detection model with a significant reduction in latency compared to the 

centralized scheme, while reaching a significant detection accuracy compared to the centralized one. 
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I. INTRODUCTION 

The performance, sustainability and safety of 
smart cities are achieved by the integration of massive 
infrastructure components and services in the areas of 
energy, transportation, healthcare, education, smart 
homes, smart lighting, and utilities. Fulfilling these 
objectives, requires the real-time monitoring and 
analysis of the behavior of different infrastructure 
components and a quick feedback control system [1].   
For monitoring the critical infrastructures in smart 
cities like bridges, gas/oil/water pipelines, roads, and 
subways, wireless sensor networks (WSNs) consists 
of small, cheap and intelligent sensor node with the 
ability to collecting raw data from a large scale area 
are the most suitable platform The sensor nodes 
monitor system behavior and measure required 
parameters. Malfunctions, faults or unexpected events 
in the environment may cause unexpected 
measurements by the sensors called anomaly. The 
anomaly is unusual observations that contradict the 
distribution of the majority of the data. In this context, 
it is important to identify and report those erroneous 
measurements to provide reliable and safe network 
performance. The process of detecting unusual 
behavior or hazardous events in the system is known 
as anomaly detection [2]. Identification of anomalous 
behaviors necessitates having a model for the majority 
of normal data, and then detection of the anomalies 
based on those data vectors, which are significantly 
differ from the normal model. Measurements 
collected by the sensor nodes form time-ordered data 
and anomalies can be detected by analyzing the time 
series data [3], [4]. However, sometimes, during the  
lifetime of data collection, the underlying 
phenomenon that is being observed may alter 
(concept drift) [5]. This will cause a change in the  data 
distribution of the nodes; thus the data distribution 
will no longer be stationary rather a non-stationary 
one. If a system has a stationary data distribution, the 
model of the data from which anomalies are identified 
only needs to be constructed once. In contrast, in an 
environment with a non-stationary data distribution, 
it is necessary to construct a new model at certain time 
intervals in order to account for changes in the data 
distribution. In non-stationary systems, the data are 
temporally correlated, with correlation increasing as 
temporal distance decreases. Therefore, in order to 
achieve the best generalization error, the  model needs 
to be formed from data that are temporally  close to the 
data that will form the testing set [6]. 

     Beside the non-stationary data distribution, 
another point to consider is the concept of big data. 
The large-scale distributed sensor networks generate 
a huge volumes of data, which leads to the challenge 
of processing big data. The centralized processing of 
high volume of data results in high processing delay, 
which is in conflict with the timing requirements of 
the time-sensitive applications [7]. Moreover, the 
large quantity of data causes high transmission traffic 
on the communication networks, and consequently the 
high communication delay. Location-awareness 
requirement are also necessary for some applications. 
Therefore, the cloud computing paradigm faces great 
challenges with the explosive amount of big data, the 

network bandwidth limitation, the low speed of data 
transmission, and the additional need for location 
awareness. Fog computing concept proposed by Cisco 
[8], is an efficient alternative to the cloud computing 
to meet these requirements. Fog computing extends 
the cloud computing architecture to the edge of the 
network to perform large-scale services throughout 
the network [9], [10]. Offloading some portions of the 
computing tasks to the fog nodes with computation 
and storage capability at the edge of the network will 
satisfy the requirements of low latency, low 
communication and location awareness in our 
applications. The Fog paradigm is well positioned for 
real-time big data analysis. 

The concepts of smart monitoring and anomaly 
detection can be utilized to obtain the real-time 
control of smart grid conditions, and make decisions 
towards more efficient resource management. It has 
the potential to reduce peak demand, improve energy 
conservation, and enable the integration of renewable 
energy sources, which guarantees sustainable energy 
resource [11]. In this paper, smart monitoring is 
leveraged to detect anomalies in an urban water 
distribution grid. The urban water distribution grids as 
one of the most important infrastructures in the cities 
play significant role in the water supplying. However, 
several threats like aging and unexpected 
environmental events (sudden air temperature change) 
endanger the performance of water pipelines. These 
threats may result in corrosion, leakage, and failure of 
the grid, and consequently severe economic and urban 
problems [12].  

In this paper, a four-layer hierarchical fog 
computing architecture is applied to detect anomalies 
in a non-stationary water distribution grid. In this 
research, anomalies are supposed as abnormal 
observations occurred via unexpected events at the 
water grids, which can be detected at any layers based 
on the extent of the area in which the data deviation 
happens. We define three different types of anomalies 
to be detected using the gateway, fog and cloud levels 
as follows. Local anomaly, which is due to an element 
failure or malfunction like pipeline leakage as a 
prevalent failure in the water pipelines. This failure 
affects the measured data of one or more sensor nodes 
locally where anomaly has occurred and makes their 
data as outlier. Regional anomaly, in which adverse 
events lead to failures or malfunctions like water 
supply disconnection or water pressure reduction at a 
region. Regional anomalies affect one or more 
locations of a region and change the normal behavior 
of sensor nodes in those locations. Global anomaly 
commonly caused by some global events like 
earthquake or extremely hot or cold weather that make 
global failures or malfunctions like water supply 
disconnection in the grid. Regarding these three types 
of anomalies, the task of detection could be offloaded 
at each corresponding layer of the hierarchical 
architecture.  

 The main contribution in this research is the 
evaluation of applying a hierarchical fog computing 
model for anomaly detection in a non-stationary water 
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distribution grid compared to the centralized scheme 
in terms of the accuracy of detection and the amount 
of data transmissions. We exploited spatial/temporal 
correlation of data at each layer to detect existing 
anomalies in the created dataset. The results showed 
that the hierarchical model have made significant 
decrease in the data transmission compared to the 
centralized schemes, while achieving a comparable 
detection accuracy compared to the centralized one. 

The rest of this paper is organized as follows: In 
Section II, we introduce some related works on 
anomaly detection, fog computing architecture and 
data correlations. In Section III, an overview of the 
hierarchical fog computing scheme and related 
methods for anomaly detection is described. Section 
IV illustrates the model for anomaly detection in 
water distribution grids. Evaluation results are 
presented in Section V. Finally, section VI concludes 
the paper. 

II. RELATED WORKS 

A. Anomaly Detection with Fog Computing Scheme 

 The challenges of analyzing the big data created 
by smart cities require using novel and high-
performance architecture of fog computing. The key 
objective of fog computing architecture is distributing 
workloads throughout the network in order to reach 
low delay, less communication network overhead and 
higher performance computing capability. Bonomi et 
al. [13] described the fog computing advantages, 
which make it an appropriate choice for a number of 
real-time applications with low latency in Internet of 
Things (IoT) and big data processing. The Fog 
paradigm is well positioned for real-time big data 
analysis by supporting densely distributed data 
collection points, and providing advantages in terms 
of superior user experience.  

Detecting interesting or unusual events as 
anomalies is an open issue in the data mining 
community. Non-parametric anomaly detection 
methods, does not have any prior knowledge about the 
distribution of the collected data at each time window. 
These methods are proper for dynamic environments 
where the condition and consequently, the data 
distribution may change frequently over the time 
(non-stationary). Lyu et al. [14] introduced a non-
parametric distributed fog-empowered method for 
anomaly detection in large-scale systems. Authors 
utilized the fog computing advantages along with a 
hyperellipsoidal clustering algorithm and a scoring 
mechanism (ENOF) to detect anomalies at the vicinity 
of the network. Their research focus is using fog 
architecture for anomaly detection in order to 
diminish the latency and communication overheads.  

Water distribution grids are prone to various types 
of threats, failures and unexpected events. 
Conventional anomaly detection techniques have 
been widely utilized for detecting anomalous 
measurements at these infrastructures.  Daniel et al. 

[15] used the full label BATADAL dataset [16] to 
identify anomalies in the water distribution grids by 
applying several traditional anomaly detection 
approaches and proposing an ensemble technique. 
This technique uses a quadratic discriminant analysis 
(QDA) process that combines the output of a distance-
based shared nearest neighbors (SOD) algorithm 
designed to detect outliers in high-dimensional data 
[17] with a local outlier factor (LOF) algorithm [18] 
to detect outliers in low-dimensional data to classify 
data points into anomalous or normal classes. Authors 
considered stationary systems and used supervised 
methods for centralized training. In [19], time series 
data modeling were applied by researchers to detect 
anomalies in smart power grids. They used statistical 
methods to detect outliers in the low volume data and 
applied RNN to recognize the normal behavior at a 
stationary grid with a centralized scheme. The authors 
in [20] focus on real-time identification of cyber-
physical attacks on water distribution grids. They 
applied supervised machine learning anomaly 
detection techniques in stationary water grids by 
creating four modules. The first layer checks whether 
the given observations follow the right rules specified 
for the system, while the second layer finds statistical 
outliers. The third module has an Artificial Neural 
Network Model (ANN) that predicts the anomalies. 
The fourth module contains Principle Component 
Analysis (PCA) to classify data as normal or 
anomalies.  

The aforementioned methods for the anomaly 
detection in the smart grids mostly applied the 
supervised machine learning methods for model 
classification without considering the concept drift in 
the data distribution. Moreover, these works mainly 
analyzed the system behavior based on a central 
scheme, which suffers from the scalability issues, the 
high latency and the high communication overhead. 
At this research, a hierarchical architecture along with 
an unsupervised detection method has been applied 
for the anomaly detection problem in a water 
distribution grid.   

B. Correlation of Data 

In WSNs, in order to certify the full coverage of a 
monitored environment, a spatially dense deployment 
of sensor node is required [21], [22]. This deployment 
results in observing same condition by multiple sensor 
nodes. For example, in water distribution grid, sensor 
nodes measure same physical features for water at 
pipes; consequently, they have the same data 
distribution. A set of sensor nodes within a spatial 
proximity, which measure the same phenomenon have 
the spatial correlation of their data. These spatial 
correlation among gathered data could be used to 
detect anomaly at that time.   

In addition to spatial correlation, temporal 
correlation of data may occur. When the underlying 
features of the phenomenon that is being recorded 
change gradually over the time, temporal correlation 
arises between consecutive data points. Data 
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measurements on an individual sensor node become 
temporally correlated due to the nature of the 
phenomenon that is being monitored; for example, in 
distribution grids, pressure measurements at each 
consumer node exhibit a predictable behavior pattern 
(gradual change) during the lifetime of simulation. 
Temporal correlation can also be used to detect 
anomalies by comparing data point of several 
sequential time windows [6].  

 Therefore, spatial-temporal correlation of data 
may occur in WSNs where data collected on different 
nodes and at different times, exhibit a predictable 
relationship. The spatial, temporal and spatial-
temporal correlation of data can be exploited to 
identify an anomaly and determine its cause [6]. 
Vuran et al. [23] studied data correlations in order to 
reduce energy consumption in a WSN. The objective 
of this research is to exploit spatial/temporal 
correlation of the WSN paradigm to enable the 
development of efficient communication protocols. 
They use spatial and temporal correlation for efficient 
medium access and reliable event transport in WSN, 
respectively. 

Anomalies caused by errors occur independently, 
whereas anomalies caused by events exhibit spatial 
and/or temporal correlation. At this paper, we defined 
anomalies occurred by unexpected events with 
spatial/temporal correlation. 

III. FOG COMPUTING ARCHITECTURE 

A. Distributed Schemes 

In WSNs, raw data are recorded by the individual 
sensor nodes, which are dispersed in a physical 
environment and monitor the environmental 
conditions of their vicinity. The spatial correlation of 
sensor nodes ensures the similar experiences of one 
sensor node to the other close nodes, hence it is useful 
for these nodes to share identified characteristics of 
their data  for better perception of the system behavior. 
This may lead to a distributed learning structure where 
information describing the data of one sensor node is 
communicated with other nodes to build a 
comprehensive model of the environment to identify 
the outliers and the anomalous sensor nodes 
accurately [24]. Learning in a distributed environment 
is divided into two distinct categories; hierarchical 
and central.   

In the centralized approach [15], [19], [20], all 
sensor data are transmitted via multiple hop 
communication to a central node. The central node 
constructs the data model using the whole data, and 
anomalies are detected by analyzing the created 
model. High accuracy in the anomaly detection 
process is attained due to the computational power of 
the central node that enables it to run more 
computationally complex anomaly detection 
algorithms on the immense amounts of data. Though, 
the communication costs in transmitting all local 
nodes data measurements to a central node could be 

prohibitive. In addition, scalability issues when the 
measurement numbers scales up become a noticeable 
problem. Finally, the delay incurred by the 
transmission of the massive data to a central node and 
processing that big data to detect anomalies increases 
the response time for online applications. Therefore, 
cloud computing architecture (centralized approach) 
cannot meet the requirements of scalability, 
communication cost and timely response in the large-
scale real-time applications.  

Hierarchical learning attempts to limit the 
transmissions to a central node by building sub-
models locally and merging sub-models to a complete 
model as data goes up in the hierarchy. An 
intermediate node in the hierarchy run the same 
instance of the model fusion and anomaly detection 
algorithms to first build a parent model from received 
sub-models and then check for anomalies. 
Intermediate nodes merely transmit information about 
the local models to the parent node in the higher layer 
rather than the whole data from sensor nodes in the 
network. Summarized information that contains the 
form of model parameters and/or anomalies, is 
transmitted to ensure a reduction in transmission time 
and load in transmitting nodes.  Furthermore, the 
hierarchical scheme supports location-awareness of 
anomalies and allows different types of anomalies to 
be detected based on the range of anomaly, namely, 
local anomalies, regional anomalies and global 
anomalies, using the fog and cloud level cluster 
information. However, the hierarchy can affect the 
accuracy of anomaly detection by indirect information 
exchange among all the end nodes either. 

 

 

 

 

 

 

 

 

Fig 1.  Hierarchical four-layer fog computing architecture. 

 

Considering the scale of water grids, we use a 
four-layer hierarchical fog computing architecture 
(Fig. 1) for anomaly detection as follows [1]: 

• Sensing layer: which is comprised of numerous 
sensor nodes monitoring the environment features and 
record required data at the regular time intervals. At 
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the end of each time window, sensor nodes forward its 
raw data into the upper layer (gateway layer).  

• Gateway layer: which contains intermediate 
nodes with relatively low-power and high 
performance capability. Each gateway devices is 
connected to and responsible for a local group of 
sensors in its vicinity. Gateway nodes receive the 
collected raw data from their local sensors and process 
them to detect anomalies. The gateways output 
involves: (1) summary information of the processed 
data to be sent to the next upper layer in the hierarchy, 
(2) a signal message to be sent to one or more of its 
local sensors to alarm about the detected malfunction 
or fault at them. 

• Fog layer:  consists of a number of nodes with 
intermediate storage and computing capability 
connected to a group of gateway nodes . Fog nodes 
should process transmitted summary information 
from the gateways to identify the potential anomalous 
events. They merge received information from the 
gateway layer, analyze them and send the summaries 
to the cloud layer. They also make quick control 
response to the gateway layer when an unexpected 
event is detected.  

• Cloud layer: All the results of cluster analysis at 
the fog layer are communicated to the cloud layer, for 
more comprehensive and precise system analysis and 
global monitoring. This layer provides city-scale 
monitoring and centralized controlling via a cloud 
computing data center. Next, we describe a clustering 
algorithm uses hyperellipsoidal clusters to model the 
collected data of sensor nodes.    

B. Clustering Algorithm  

Based on the statistical and machine learning 
algorithms, the anomaly detection approaches are 
classified as follows: clustering-based approaches, 
classification-based approaches, dimension-
reduction-based approaches, and hybrid approaches 
that combine multiple technologies together [25]. The 
clustering approach, which is the process of dividing 
data points to several groups such that each group 
contains highly similar data points, has been broadly 
applied as a non-parametric knowledge discovery tool 
in the systems with restricted resources, such as the 
wireless sensor networks. In the data clustering based 
approaches, the data are first clustered and then 
anomaly detection method is applied to detect the 
outliers and anomalous clusters [26]. We applied 
unsupervised HyCARCE [26] algorithm as a 
computationally efficient clustering algorithm in our 
anomaly detection platform. This algorithm can 
model many different data distributions including 
hyperspherical to linear. Besides, the number of 
clusters is chosen by an automatic mechanism, and a 
linear computational overhead is imposed in terms of 
the number of data vectors processed. This algorithm 
has an input parameter: initial grid cell width 𝑤. The 
main steps of the HyCARCE algorithm are as follows 
[26]: 

Step 1. At first, the input space is divided into a set 
of same size cells with d-dimension. Then, empty 
cells are removed. 

Step 2. The grid cells that contain a small number 
of data points are removed. If the cardinality of an 
initial cell is less than the mean value minus the 
standard deviation value of all data points, the grid 
cells is deleted. Then, the clusters is created over the 
data points of the remaining cells. The mahalanobis 
distance with the sample mean µ of data points in a 
cell having covariance matrix  Σ  is used to make 
hyperellipsoid clusters around the mean in each cell 
(Eq.1). The threshold 𝑡 = (𝜒𝑑

2)
𝑝

  (i.e., the inverse of 

the chi-squared statistic with d-degrees of freedom) as 
the effective radius results in a hyperellipsoids with at 
least  𝑝 = 95% coverage of the data points of a cell. 
This threshold is used to make the boundary of 
hyperellipsoids. Each data point 𝑥  that satisfies the 
following equation falls inside the hyperellipsoid 𝑒. 

 
𝑒(µ, 𝛴−1, 𝑡) = {𝑥 𝜖  ℜ𝑑ǁ (𝑥 −  µ)𝑇  𝛴−1  (𝑥 −  µ) ≤

  𝑡 }                                                                 (1) 

Step 3. At this step, the algorithm enlarges the 
ellipsoids to better fit the shape of the cluster. The 
enlargement is achieved by scaling the inverse 
covariance matrix 𝛴 −1  by the scaling factor 𝑆𝑓 as 

shown in Eq. (2). The amount of the scaling factor 
mainly depends on the distribution of the data. In a 
very dense data distribution, a value close to one can 
be chosen for this factor, in contrast to sparser data 
distributions the smaller value is more suitable [25]. 
New mean and new covariance matrix are 
recalculated based on the new data points inside the 
enlarged ellipsoids and ellipsoid boundaries are 
adjusted to incorporate the new data points. These 
processes continue until the number of new added 
data points to the new clusters becomes less than a 
threshold.                                                                                  

𝛴−1  𝑒𝑛𝑙𝑎𝑟𝑔𝑒𝑑 =  𝑆𝑓  ×  𝛴−1                          (2) 

Step 4. At the last step, the algorithm identifies the 
redundant ellipsoids which their center are very close 
to each other and delete the one with less number of 
the data points. After removing the redundant 
ellipsoids, the remaining ellipsoids mark the 
boundaries of the clusters. Next, we discuss an 
algorithm that analyzes these hyperellipsoidal clusters 
and provides an outlierness score to identify 
anomalous clusters and detect anomalies.  

C. Spatial Correlation  

Once a set of hyperellipsoidal clusters are created, 
a scoring mechanism should be applied to identify the 
normal and anomalous clusters. Regarding the spatial 
correlation of data at each time window, we use ENOF 
[26] algorithm to classify clusters as the normal and 
anomalous base on an outlierness score for each 
ellipsoid. ENOF mainly relies on the distance metric 
and the use “focal distance” between two ellipsoids to 
find close neighborhoods of each ellipsoid [27]. Then, 
the outlying ellipsoids are identified relative to their 
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close neighborhood, with respect to the densities of 
their neighborhoods. ENOF mechanism calculates an 
outlierness scoring parameter by comparing the 
reachability density of each ellipsoid with the average 
reachability density of its close neighbors in order to 
identify the ellipsoids which are outlying relative to 
their close neighborhoods. In particular, an ellipsoid 
that belongs to a dense group of ellipsoids has a 
smaller outlier score than an ellipsoid that is far from 
this group of ellipsoids. This is a ratio between the 
average neighborhood reachability density of the 
neighbors and the ellipsoids’ own neighborhood 
reachability density. This ratio becomes 1 when an 
ellipsoid becomes comparable to its neighboring 
ellipsoids. For the faraway ellipsoids from their 
neighbors, the ENOF becomes significantly higher 
than 1. ENOF scores are used to determine the 
anomalous clusters via comparing cluster scores with 
a Threshold computed using the ENOF scores. 

The ENOF procedure can only work efficiently, 
when an event affects a number of nodes at one layer 
and a part of ellipsoids or data deviate from the rest of 
ellipsoids or data. Then, the procedure detects the 
outliers in comparison with the normal data of each 
time window. Although, some events similarly affect 
the behavior of all nodes at a location and 
consequently, the whole data model of that location. 
Hence, the ENOF algorithm cannot detect these 
anomalies effectively. At the next, we discuss 
temporal correlation and introduce a method to detect 
these anomalies based on the temporal similarity.  

D. Temporal Correlation 

As mentioned in introduction, alterations in the 
condition of underlying environment that is being 
monitored make a non-stationary system, in which 
collected data changes during the lifetime of the 
environment. Data distribution of sensor nodes  
gradually changes along with the environment 
changes. Since the data measurements at close 
intervals are expected to be more correlated, temporal 
correlation can be exploited to detect unexpected and 
sharp data changes portending hazardous events. 
Therefore, we compare the data models of two 
consecutive time windows in order to detect abrupt 
changes and accordingly the temporal anomalies.  

The procedure uses the similarity of two 
consecutive models to detect temporal changes. It 
compute these similarity as follows: At first, the 
procedure checks whether two models are exactly 
same or there is a change.  If the model has changed, 
it calculates the amount of change (model shift) by 
computing the average focal distances of each 
ellipsoid in the current model from all ellipsoids of the 
previous one. Then, it calculates the average of these 
average distances computed for each ellipsoid. This 
value is compared with the temporal threshold 𝑇 to 
detect abrupt change and unusual events. The 
temporal change greater than 𝑇 notifies an anomaluy. 

  

Algorithm 1: Temporal Change Detection 

Role: Computing nodes (gateway, fog, cloud) calculate 

the temporal similarity between two models (i , j)  

    { 

 Compare tow models (i , j) 

If (not copy) 

{ 

    for each ellipsoid ek in model i 

 compute the focal distance of ellipsoid 

ek from the all ellipsoids of model j. 

       calculate the average tk of these focal 

distances. 

compute tij as the average of all computed ti 

for each ellipsoid. 

if (tij ≤ T) 

      “no temporal anomaly detected.” 

else  

      “temporal anomaly detected.” 

} 

 

Fig. 2 shows the measured accuracy values for the 
spatial and spatial-temporal correlations. A four-layer 
fog computing architecture and a water grid dataset 
were used. 

 

Fig 2.  accuracy in anomaly detection with spatial and spatial-

temporal correlations. 

E. Merging Algorithm 

Fog or cloud nodes at the upper layers should 
firstly merge their received clusters from the lower 
layers in order to obtain their own level clusters. 
Clusters can be merged in a pairwise manner.  For 
each pair of clusters 𝑒𝑖 and  𝑒𝑗, with mean vectors µ𝑖  

and µ𝑗, covariance matrices 𝛴𝑖  and 𝛴𝑗, and the 

number of cluster elements 𝑁𝑖  and   𝑁𝑗 , the merged 

(hyperellipsoidal) cluster 𝑒𝑚  will have the mean 
vector µ𝑚, covariance matrix 𝛴𝑚 and the number of 
cluster elements 𝑁𝑚 computed as follows [27]: 
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𝑁𝑚 =  𝑁𝑖 +  𝑁𝑗                                                            (3) 

µ𝑚 =  
𝑁𝑖

𝑁𝑚
µ𝑖 + 

𝑁𝑗

𝑁𝑚
µ𝑗                                                   (4) 

𝛴𝑚 =  
𝑁𝑖−1

𝑁𝑚−1
𝛴𝑖 +  

𝑁𝑗−1

𝑁𝑚−1
𝛴𝑗  +  

𝑁𝑖𝑁𝑗

𝑁𝑚(𝑁𝑚−1)
 [( µ𝑖  −  µ𝑗)( µ𝑖 −

 µ𝑗)
𝑇

]                                                 (5) 

Many researchers choose Euclidean distances as a 
metric for measuring the similarity of two clusters. 
Two clusters should be close to one another and they 
should have a large number of data points in common 
to be merged; there should not be a significant gap 
where no data sample exists [28]. Accordingly, we 
used focal distance [27] between two ellipsoids as a 
metric for choosing two clusters to merge (Fig. 3). If 
the focal distance of two ellipsoid is less than a 
merging threshold 𝑅, two ellipsoid are merged. Next, 
we present the introduced anomaly detection methods 
to identify anomalies in the water distribution grids 
with the four-layer fog computing architecture.   

 

 

 

 

 

 

 

Fig 3.  Focal distances between two ellipsoids. 

I. WATER DISTRIBUTION GRID 

MODELING 

In this section, the overview of the hierarchical 
model for anomaly detection is presented. A smart 
water grid should have ability to monitor the safety of 
pipelines throughout the grid and detect potential 
dangerous events. By monitoring and analyzing the 
physical parameters of water (pressure, flow and 
head) during a time window, unexpected behaviors 
can be detected. These behaviors may indicate a 
system failure or an emergency event.  Indeed, the 
basis of the scheme is the real-time surveillance of the 
water distribution grid, processing the received data 
and accurate and quick detection of unexpected events 
as anomalies.  

The hierarchy of the scheme alleviates the 
computational overhead imposed at the cloud. 
Further, using the computing nodes at the edge of the 
network helps early identification of anomalies along 
with minimizing the data transmission. The detailed 
functions of each node in the hierarchy are as follows: 

• Each sensor node gathers the raw data of water 
pipelines during a time window and transmits its 
measured data to the upper connected gateway node. 

• Gateway nodes at each time window, after 
receiving all the raw data from their associated sensor 
nodes, perform clustering on the data using the 
hyperellipsoidal clustering algorithm (HyCARCE) to 
model the gateway level clusters. Then, the ENOF 
algorithm is applied on the clusters to find the outliers 
and anomalous clusters as the local level anomalies. 
Gateway raises alarm messages for any possible 
detected anomalies. However when an undesirable 
event affects all the sensor nodes in a time window the 
gateway will not be able to detect anomalies by 
applying ENOF on the clusters. This is where the 
temporal correlation comes to play. Comparing the 
temporal difference of two constitutive models, abrupt 
change in the current model could be detected. Abrupt 
change indicates an unexpected event in the 
underlying environment monitored. This detection is 
alarmed by the gateway nodes. Then, the gateway 
clusters summary information (ID, mean, and 
covariance matrix) are communicated to the fog nodes 
at the next upper layer for regional analysis.  

• The Fog nodes merge the received cluster data of 
their sub-ordinate gateway nodes based on the 
procedure explained in the previous section by using 
a user-defined parameter 𝑅 as the merging threshold . 
ENOF is applied on the merged clusters to classify the 
anomalous and normal clusters and find the spatial 
regional level anomalies. Then temporal similarity is 
calculated to detect temporal anomalies at this level. 
Since the regional anomalies affect nearly all parts of 
a region, all sensor data of one or more gateways are 
affected; the sensor nodes of these gateways are 
labeled as anomalous and the fog node creates an 
alarm signal to their connected gateways. After that, 
the fog level clusters will be transmitted to the upper 
layer for global analysis.  

• The received clusters at the cloud layer are 
merged in order to form the cloud layer clusters. Then, 
ENOF is exploited to find spatial anomalies at the 
cloud layer and consequently the temporal similarity 
is exerted to identify abrupt temporal changes. If a 
global anomaly have been occurred in the water 
distribution grid, the cloud can detect that and send an 
alarm signal to the related nodes.  

IV. EVALUATION RESULTS 

In this section, the accuracy and percentage of the 
communication saving for the hierarchical fog 
computing scheme are evaluated compared to the 
centralized scheme in the previous studies ([15], [19], 
and [20]). An evaluation test-bed were crated as a set 
of Docker [29] containers for emulating the four-layer 
fog and centralized architectures. Any intermediate 
nodes in the hierarchy executed as a container with 
predefined resource capacity.  For emulating the 
sensor nodes functionality, a containerized Node-Red 
[30] process were used that successively queries 
measurements from a database node and transmits to 
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the upper layer interval by interval using MQTT [31] 
protocol. All the transmitted messages are JSON 
strings containing the sensor data, intermediate 
models or anomaly alerts. 

A. Data Sets 

For this research, we made a real-world dataset by 
simulating a sample of water distribution grid in a city 
[32]. Epanet 2 + WaterNetGen simulation software 
[33] was used for designing and implementing an 

 able tois  The software grid.urban water distribution 
period simulation of the hydraulic -perform extended

and water quality behavior within pressurized pipe 
nodes,  consumer networks, which consist of pipes,

. It can be used to track the so onstorage tanks, and 
of and head flow of water in each pipe, the pressure 

node, the height of the water consumer water at each 
in each tank, a chemical concentration, the age of the 
water, and source tracing throughout the network 

during a simulation period. 

A water distribution grid consists of three distinct 
regions were designed by the software, three streets 

in each region each including six consumer nodes was 
deployed in the software. The hierarchical fog 
architecture configuration used for the aforesaid data 
set are illustrated in Fig. 4.   Each consumer node was 
monitored by a sensor node. Hence a total of 54 sensor 
nodes were used to cover this grid. Streets and regions 
are monitored by a gateway and fog nodes 
respectively. The whole grid is under the surveillance 
of one cloud node. In contrast, in the centralized 
configuration, all 54 sensor nodes are monitored by a 
central node and the data is transmitted to it by multi-

hop communications.  

The Epanet software was set to record water 
parameters at the consumer nodes every 30 seconds 
during the simulation time to make the dataset. The 
sensor nodes send the collected measurements during 
a 30 minutes time window to the gateway nodes. The 
Simulation lasted six hours and at each time window, 
4300 two-dimension data vectors were measured by 
each sensor node, having normal distribution (proved 
by the Kolmogorov–Smirnov test) with various 

cluster overlaps degree.  

 

Fig 4.  The hierarchical fog architecture configuration used for the 

evaluation.) 

 

Fig 5.  Scatter plot of all combined data at a time window. 

Fig. 5 shows the scatter plot of the measurements 
made by all 54 sensor nodes in a time window. This 
plot shows three distinct colors denoting the measured 
data at each region during a time window. We used 
the maximum/ minimum value of the combined data 
of all sensors to normalize data to the range [0, 1]. As 
you can see, an anomaly is observed in the plotted 
data. It is a small collection of data vectors in the 
lower right hand corner of the plot that differs 
significantly from the majority of the data. This 
anomalous data constitutes a part of the data from the 
region 3 (fog node 3). We labeled these visually 
obvious anomalous data vectors as anomalies, and the 
rest of the data vectors as normal for our evaluation 
purposes.  

B. Accuracy 

Here, we compared the detection accuracy of the 
proposed hierarchical scheme with the centralized 
anomaly detection scheme considering the temporal 
and spatial correlations. In the centralized detection, 
anomalies were identified based on all the 54 sensors’ 
data at each sliding window. The accuracy of the 
scheme was assessed based on these two parameters: 
(𝑖) true positives (𝑇𝑃), and (𝑖𝑖) true negatives (𝑇𝑁). 
The number of correctly detected anomalous behavior 
are defined as  𝑇𝑃 , and the number of correctly 
detected normal behavior are defined as 𝑇𝑁. Using 
these at each time window, the accuracy parameter 
was computed as 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑇𝑃 + 𝑇𝑁) 𝑛⁄ , where 
𝑛  was the number of data vectors in each sliding 
window [14]. Finally, the overall accuracy was 
considered as the average of all computed accuracies 

at each time window. 

Experiments repeated using different values for 
two parameters of the HyCARCE and merge 
algorithms: cell size 𝑤 and the merging threshold R 
[14]. Fig. 6 shows the results for the accuracy 
measurement with different window sizes, while 
keeping the merging threshold 𝑅 fixed at 0.005. The 
scaling factor of HyCARCE is set to 0.95, the z and k 
values of the ENOF are set as 3 and 25% respectively, 
and the temporal threshold 𝑇  is set .005 in this 
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research. The research findings affirm the close 
accuracy to the centralized scheme; the smaller cell 
sizes result in the closer accuracy to the centralized 
scheme. Because, using lower 𝑤  produces more 
number of clusters leading to similar results to the 
centralized scheme.  

In addition to the cell size, the merging threshold 
can also affect the detection accuracy.  Fig. 7 
illustrates the accuracy results for a range of  𝑅 with 
the fixed cell size 𝑤 =  0.01. As you can observe in 
the Fig. 7, in the bigger 𝑅 values more number of the 
clusters will be merged which causes much more 
information loss and less accuracy. While in the lower 
𝑅  values, less merged clustered results in a better 
accuracy. 

 

Fig 6.  Example Anomaly detection accuracy with different values 

of 𝑤. 

  

Fig 7.  Example Anomaly detection accuracy with different 

values of 𝑅. 

C. Communication Traffic 

We compared the hierarchical fog computing 
scheme with the centralized cloud computing scheme 
based on the number of inter-layer data transmissions. 
In the fog model, the raw data is just transmitted 
between the sensor and the gateway layers, after that 
only the clustering information (model of the data) is 
communicated along the hierarchy. Hence, it is clearly 
expected that a notable reduction in communication 
traffic will be achieved in this scheme. This is in 
contrast to the centralized scheme where no 

intermediate data model is constructed and all 
transmissions involve detailed sensor measurements.  

We performed simulations for different cell sizes 
𝑤 ranging from 0.007 to 1 in 0.05. Each sensor node 
in the centralized scheme is assumed to be three hops 
away from the cloud and the raw data vectors are 
passed through three communication hops to reach the 
cloud. The saving percentage in communication load 
was calculated based on Eq. (6) that NTH denotes the 
total number of the transmissions (data and cluster 
information) in the hierarchical scheme and NTC 
denotes the number of the transmissions in the 
centralized Scheme. 

Saving Percantage = (1 −
𝑁𝑇𝐻

𝑁𝑇𝐶
) ∗ 100                             (6) 

   The total reduction in traffic for different cell 
sizes and different values of  𝑅 are shown in Fig. 8 and 
9 respectively. In Fig. 8, the fixed merging threshold 
R = .005 and in the Fig. 9, the fixed cell size 𝑤 =
0 .01 were used.  

It was observed that the larger the cell size is 
chosen, the higher reduction in communication traffic 
is achieved. Larger cell sizes result in a clustering with 
fewer numbers of clusters which causes a smaller data 
model to transmit to the upward layer (Fig. 8). It 
argument is also true for explaining the results in Fig.  
9.   

 

Fig 8.  The percentage of communication saving in the 

hierarchical architecture for different cell sizes.   

 

Fig 9.  The percentage of communication saving in the 

hierarchical architecture with different R values. 
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Fig 10.  Comparison of the execution times of HYCARCE and 

K-means Algorithms for different dataset sizes. 

D. Clustering Performance 

The results of comparing HyCARCE clustering 
algorithm with the well-known K-means algorithm in 
terms of execution time and accuracy are presented 
here.  Both HyCARCE and K-means algorithms were 
applied on the dataset to create clusters. As shown in 
Fig. 10, for the small dataset sizes, two algorithms had 
similar execution times, however as the size of dataset 
increases the HyCARCE algorithm create clusters 
much faster. To compare the accuracy of algorithms, 
three internal metrics: Silhouette Coefficient (the 

higher value means better quality), Calinski_Harabasz 
(the higher value means better quality) and Davies 
Bouldin (the lower value means better quality) [34] 
were used. Fig. 11 shows the result of comparison of 
two algorithms in terms of accuracy. Obviously, 
opposed to k-means, the accuracy of the HyCARCE 
algorithm is very sensitive to the selection of cell size. 
As shown in this figure w=0.01 worked the best for 
HyCARCE. However overall, k-means outperformed 
HyCARCE in terms of accuracy.  

V. CONCLUSIONS 

Fog computing is an interesting scheme for 
collecting and processing the expanding amounts of 
IoT data in large scale surveillance applications. In the 
time-critical applications, quick and accurate 
detection of the anomalous behaviors in the 
environment is the most important challenge. We used 
a four-layer fog computing architecture in order to 
detect anomalous consumption patterns in water 
distribution grids. The hierarchical architecture makes 
possible the early and accurate identification of 
various ranges of anomalies. This scheme resulted in 
real-time detection of anomalies with low inter-layer 
communication traffic compared to the centralized 
schemes. Evaluation results proved that the 
hierarchical fog computing architecture could reach to 
acceptable anomaly detection accuracy compared to 
the centralized scheme. As the future work, we aim to 
apply the hierarchical clustering algorithm to locate 
faulty elements in distribution grids.   

 

(a) 

 

 (b) 

 

     (c)

Fig 11.  Example Comparisons of the accuracy of HYCARCE and K-means algorithms based on: (a) Davies Bouldin metric, (b) 

Calinski_Harabasz metric and (c) Silhouette Coefficient metric for different values of 𝑊. 
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